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Electrostrictive materials convert electrical energy into mechanical energy and vice versa. They are extensive applied as intelligent
materials in the engineering structures. The governing equations in electrostrictive media under the quasistatic electric field are
very important for the measurement of material constants and the research on the strength and function. But some theoretical
problems should be further clarified. In this paper, the electric force acting on the material is studied and the complete governing
equations will be given. In this paper a possible method to measure electrostrictive coefficients is also discussed.

1. Introduction

The measurement method of material constants in an elec-
trostrictive material is somewhat controversial between au-
thors. Shkel and Klingenberg [1] considered that “The ulti-
mate deformation depends on the elastic properties of the
fixtures attached to the material (e.g., the electrodes). The
(electrostrictive) coefficients γijkl are therefore not strictly
material parameters, but rather characteristics of the entire
system.” Zhang et al. [2] pointed out that “In general in
a nonpiezoelectric material such as the polyurethane elas-
tomers investigated, the electric field induced strain can be
caused by the electrostrictive effect and also by the Maxwell
stress effect. The electrostrictive effect is the direct coupling
between the polarization and mechanical response in the
material. . . . On the other hand Maxwell stress, which is
due to the interaction between the free charges on the
electrodes (Coulomb interaction) and to electrostatic forces
that arise from dielectric inhomogeneities.” Guillot et al. [3]
considered that “strictly speaking, the Maxwell stress tensor
does not belong to the electrostrictive equations, but that
it should be taken into account in the measurements. . . .
it is possible to factor out its contribution to the total res-
ponse of the film and therefore to identify the isolated con-
tribution due to the (electrostrictive) tensor only.” Thakur
and Singh [4] considered that: “In most of the recent exper-
iments concerning determination of electrostrictive param-

eters in elastic dielectrics, several researchers used incorrect
equations without considering the contribution from the
edge effect, the shear stress and suitable boundary condi-
tions. This led to wrong predictions of experimental results
particularly for materials with high Poisson ratios. Errors
in the estimation of induced strains, varying from an un-
derestimation of 202% to an overestimation of 168%, have
been pointed out in the case of polycarbonate (PC).” Some
material scientists felt puzzled about the objectivity of the
electrostrictive coefficients.

In the books of Stratton [5] and Landau and Lifshitz
[6], the formula of the stress in an isotropic electrostrictive
material is

σik = ∂g0

∂εik
+ σLik,

σLik =
(

1
2

)
(2ε − a1)EkEi

−
(

1
2

)
(ε + a2)EmEmδik,

(1)

where ∂g0/∂εik is the stress without the electromagnetic field
in the medium. As shown in [7, 8] σLik in this formula is
just the pseudo total stress [9, 10] which is the sum of the
Maxwell stress and the Cauchy stress introduced by the con-
stitutive equations. In Pao’s paper [11], he considered that
the expression of the Maxwell stress is not unique and he gave
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some different expressions by different authors. McMeeking
and Landis [12] considered that “Since there are no experi-
ments that can separate the effects of the Cauchy and
Maxwell stresses unambiguously, it is generally more prof-
itable to consider their sum and not to try identify them sep-
arately,” “we obviate the need to develop a constitutive theory
that is consistent with a pre-determined formulation of the
Maxwell stress, as can often be found in the literature on elec-
trostrictive materials. Instead, the constitutive model can be
simplified to one that embraces simultaneously the Cauchy,
Maxwell, electrostrictive and electrostatic stresses, which in
any case cannot be separately identified from any experi-
ment.”

From the above and other literatures we can find
that different author has different understanding about the
governing equations and the Maxwell stress for the electro-
strictive materials. We offered the physical variational princi-
ple [7, 8, 13–17] based on the thermodynamics in the non-
linear electroelastic analysis to get the governing equations
and get the Maxwell stress naturally. The strength problem
in engineering is determined by the Cauchy stress, which is
connected with the constitutive equation, and the Maxwell
stress is an external effective static Coulomb electric force.
In this paper we give a general method to determine the
static electric force or the Maxwell stress acting on the ma-
terial by using the migratory variation of ϕ in the energy
principle. We are sorry that we do not have the ground to
do experiments, so in this paper only a possible method to
measure electrostrictive coefficients is discussed.

2. The Physical Variational Principle

In literatures [7, 8, 13–17] we proposed that the first law of
thermodynamics includes two contents: energy conservation
law and physical variational principle (PVP), that is,

Classical Energy conservation :
∫
V
dudV − dw − dQ = 0,

Classical linear PVP : δΠ =
∫
V
δudV − δw − δQ = 0.

(2)

We proposed the physical variational principle as a basic
principle in the continuum mechanics. From this principle
we get the governing equations of the nonlinear electroelastic
materials. For this principle with the electric Gibbs function
we can simply illustrated as follows.

Under the small deformation the electric Gibbs function
or electric enthalpy g = U − EiDi, where U is the internal
energy, can be expanded in the series of ε and E:

g =
(

1
2

)
Cijklεi j εkl −

(
1
2

)
εklEkEl − eki jEkεi j

−
(

1
2

)
li jklEiEjεkl,

Cijkl = Cjikl = Cijlk = Ckli j ,

li jkl = l jikl = li jlk = lkli j ,

eki j = ek ji, εkl = εlk.
(3)

The constitutive equations are

σkl = ∂g

∂εkl
= Cijklεi j − ejklEj −

(
1
2

)
li jklEiEj ,

Dk = − ∂g

∂Ek
=
(
εkl + li jklεi j

)
El + eki jεi j ≈ εklEl.

(4)

In (3) and (4) σ , ε, D, E are the stress, strain, electric
displacement, and electric field, respectively, C, e, ε, l are the
elastic coefficient, piezoelectric coefficient, permittivity, and
the electrostrictive coefficient, respectively. Using (4), (3) is
reduced to

g =
(

1
2

)
Cijklε jiεlk + ge,

ge = −
(

1
2

)
(DkEk + Δklεlk), Δkl = emklEmk,

(5)

where ge is the part of g related to the electric field. The
value Δ : ε in (5) can be neglected due to its very small.
In the electroelastic analysis the dielectric, its environment
and their common boundary aint consociate a system and
should be considered together, because the electric field exists
in every material except the ideal conductor. In this paper
the variables in the environment will be denoted by a right
superscript “env,” and the variables on the interface will be
denoted by a right superscript “int.” In the environment (3)–
(5) are all held.

Under the assumption that u, ϕ, uenv, ϕenv satisfy their
boundary conditions on their own boundaries au, aϕ, aenv

u ,
aenv
ϕ , and the continuity conditions on the interface aint. The

physical variational principle with the electric Gibbs free
energy is [7, 8, 13–17]:

δΠ = δΠ1 + δΠ2 − δW int = 0,

δΠ1 =
∫
V
δg dV +

∫
V
geδui,idV − δW ,

δΠ2 =
∫
V env

δgenv dV +
∫
V env

ge envδuenv
i,i dV − δW env,

δW =
∫
V

(
fk − ρük

)
δuk dV −

∫
V
ρeδϕdV

+
∫
aσ
T∗k δuk da−

∫
aD
σ∗δϕda,

δW env =
∫
V env

(
f env
k − ρüenv

k

)
δuenv

k dV −
∫
V env

ρenv
e δϕenv dV

+
∫
aenv
σ

T∗env
k δuenv

k da−
∫
aenv
D

σ∗envδϕenv da,

δW int =
∫
aint

T∗ int
k δuk da−

∫
aint

σ∗ intδϕda,

(6)
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where f , T∗, σ∗, are given body force per volume, surface
traction per area, and surface electric charge density, fenv,
T∗env, σ∗env, and T∗ int, σ∗ int are also given values in the en-
vironment and on the interface, respectively. n = −nenv is the
outward normal on the interface of the body.

The variation of the virtual electric potential ϕ is divided
into local variation δϕϕ and migratory variation δuϕ, and the
similar divisions in E, so we have

δϕ = δϕϕ + δuϕ, δuϕ = ϕ,pδup = −Epδup,

δEi = δϕEi + δuEi, δϕEi = −δϕϕ,i, δuEi = Ei,pδup.
(7)

The derivation of δE is in Appendix A. Finishing the vari-
ational calculation finally we get the governing equations:

Sjk, j + fk = ρük, Di,i = ρe, in V ,

Sjknj = T∗k , on aσ , Dini = −σ∗, on aD,

σMik = DiEk −
(

1
2

)
DnEnδik,

Skl = σkl + σMkl = Cijklεi j − ejklEj

−
(

1
2

)
li jklEiEj + DiEk −

(
1
2

)
DnEnδik,

(8)

where σMik is the Maxwell stress and Skl is the pseudo total
stress [9, 10]. In the environment we have

Senv
i j,i + f env

j = ρenvüenv
j , Denv

i,i = ρenv
e , in V env,

Senv
i j nenv

i = T∗env
j , on aenv

σ ,

Denv
i nenv

i = −σ∗env, on aenv
D .

(9)

On the interface we have(
Si j − Senv

i j

)
ni = T∗ int

j ,
(
Di −Denv

i

)
ni = −σ∗ int, on aint.

(10)

The above variational principle requests prior that the
displacements, the electric potential satisfy their own bound-
ary conditions and the continuity conditions on the inter-
face, so the following equations should also be added to go-
verning equations:

ui = u∗i , on au, ϕ = ϕ∗, on aϕ,

uenv
i = u∗env

i , on aenv
u , ϕenv = ϕ∗env, on aenv

ϕ ,

ui = uenv
i , ϕ = ϕenv, on aint.

(11)

Equations (8)–(11) are the governing equations in the elec-
troelastic analysis.

If we introduce the body electric force f ek , f e env
k , and

surface electric force Te
k , Te env

k in the materials as

f ek = σMjk, j , Te
k = σMjk nj ;

f e env
k = σM env

jk, j ,

Teenv
k = σM env

jk nenv
j .

(12)

Then the variational principle equation (6) is reduced to

δΠ′ = δΠ′1 + δΠ′2 − δW ′int = 0,

δΠ′1 =
∫
V
δg dV − δW ′,

δΠ′2 =
∫
V

env
δgenvdV − δW ′env,

δW ′ =
∫
V

(
fk + f ek − ρük

)
δukdV −

∫
V
ρeδϕdV

+
∫
aσ

(
T∗k − Te

k

)
δukda−

∫
aD
σ∗δϕda,

δW ′env =
∫
V env

(
f env
k + f e env

k − ρenvüenv
k

)
δuenv

k dV

−
∫
V env

ρenv
e δϕenvdV

+
∫
aenv
σ

(
Tenv∗
k − Te env

k

)
δuenv

k da

−
∫
aenv
D

σenv∗δϕenvda,

δW ′int =
∫
aint

(
T int ∗
k + Te env

k − Te
k

)
δukda

−
∫
aint

σ int ∗δϕda.

(13)

In (13) the variations of δu and δϕ are completely inde-
pendent, that is, it is not needed to consider the migratory
variation δuϕ. Equations (8)–(10) are reduced to

σi j,i +
(
f j + f ej

)
= ρü j , Di,i = ρe, in V ,

σi jni = T∗j − Te∗
j , on aσ , Dini = −σ∗, on aD;

σenv
i j, j +

(
f env
i + f e env

i

) = ρüenv
i , Denv

i,i = ρenv
e , in V env

σenv
i j nenv

j = (T∗env
i − T∗e env

i

)
, on aenv

σ ,

Denv
i nenv

i = −σ∗env, on aenv
D ,

(
σkl − σenv

kl

)
nl = T∗ int

k − Te
i + Te env

i ,

Dknk −Denv
k nk = −σ∗ int, on aint.

(14)

3. The Static Electric Force Acting
on a Dielectric

3.1. The Static Electric Force Acting on the Dielectric in a
Capacitor. In any electromagnetic textbook we can find how
to determine the static electric force acting on the dielectric
in a capacitor consisted of two parallel electrode plates and
filled dielectric with permittivity ε. Assume the length and
width of the plates are infinite, the distance h between two
plate electrodes is very small. The electric potential on the
upper plate electrode is smaller than that on the lower plate.
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Let the coordinate origin be located at its center, the plane
x1–x3 is parallel, and axis x2 is perpendicular to the electrode
plates. There is no external force on the plate and inside
the dielectric and the deformation is small. The electric field
inside the dielectric of the capacitor is homogeneous and
E = E2n, n = i2 due to that the plates are infinite, where
E2 = ϕ/h, ϕ is the difference of electric potentials between
two electrodes. The static electric force acting on electrode
plates can be obtained by the energy method.

In this simple case the static electric force can be directly
derived from the general equation of the physical variational
principle. According to (6) in this case we have

δΠ = δΠ1 + δΠ2 − δW int = 0,

δΠ1 = δ
∫
V
g dV = h

[
σ22δu2,2 −D2δE2 −

(
1
2

)
E2D2δu2,2

]

δΠ2 = 0, δW int = 0.

,

(15)

Give a virtual displacement under the constant electric po-
tential on the electrode plate. It is noted that though ϕ is
constant on the plate, but after virtual displacement ϕ is
changed inside the dielectric. For a fixed x the change of the
electric field due to changed ϕ is

δϕE2 = ϕ

(h + δh)
− ϕ

h
= −ϕδh

h2
, −D2δE2 = D2E2

δh

h
.

(16)

Due to the electric potential ϕ on the electrode plate is
constant, we have δuE2 = E2,pδup = 0, so δE2 = δϕE2.
Therefore, finally we get

δΠ = h
[
σ22δu2,2 −D2δE2 −

(
1
2

)
E2D2δu2,2

]

= hD2

[
σ22

(
δh

h

)
+
(

1
2

)
εE2

2

(
δh

h

)]
= 0

=⇒ T2 = σ22 = −εE
2
2

2
.

(17)

We can also use the Maxwell stress to derive the force ac-
ting on the dielectric directly. According to (10), we have
(Si j − Senv

i j )ni = 0 or Ti = (σi j − σenv
i j )ni = −σMi j nj , where

σM env
i j = 0 in the electrode is used. In the present case we

have T2 = −σM22 = −D2
2/2ε. If the force on the electrode plate

is zero, then the static electric force acting on the dielectric is
−D2

2/2ε, which is identical with that in (17).
In the electric textbooks the derivation is as follows:

given the upper plate a virtual displacement δh along x2, the
electric charge on the electrode plate increases δq due to fixed
ϕ, so the electric source supplies the energy ϕδq. The energy
in the dielectric increases δ(ϕq/2) = ϕδq/2 and the remained
energy ϕδq/2 is used to overcome the work produced by

the static electric force on the dielectric, that is, for virtual
displacement δu we have

F · δu = σ22δh = ϕδq −
(

1
2

)
ϕδq =

(
1
2

)
ϕδq

=
(

1
2

)
ϕδ(εE2) =

(
ε
2

)
ϕδ
(
ϕ

h

)

= −
(
ε
2

)(
ϕ

h

)2

δh =⇒ σ22 = −
(
ε
2

)
E2

2,

(18)

which is identical with that in (17). At least this result partly
proves the general theory is correct.

3.2. The Static Electric Force in General Case. Though the
static electric force acting on dielectric of a capacitor was
derived in textbooks from the energy method as shown in
above section, but the energy method did not be used to
derive the Maxwell stress in the general case.

In the general case the Maxwell stress is introduced by
the migratory variations of electric field. So the static electric
force from (6) and (13) can be written as

δWe = −δuΠ,

δuΠ =
∫
V
g,E · δuE dV +

∫
V
geδuk,kdV +

∫
V
ρeδuϕ dV

+
∫
aD
σ∗δuϕda +

∫
V env

genv
,E · δuEenvdV

+
∫
V env

ge envδuenv
i,i dV +

∫
V env

ρenv
e δuϕ

env dV

+
∫
aenv
D

σ∗envδuϕ
env da +

∫
aint

σ∗ intδuϕda,

δWe =
∫
V
f ek δuk dV +

∫
aσ
Te
kδuk da +

∫
V env

f e env
k δuenv

k dV

+
∫
aenv
σ

Te env
k δuenv

k da +
∫
aint

(
Te
k − Te env

k

)
δuk da.

(19)

It is easy to prove that f ek , Te
k , f e env

k , Te env
k derived from

(19) are identical with that in (12), see Appendix B. If the
environment is neglected, then we get

∫
V
f ek δuk dV +

∫
aσ
Te
kδuk da

= −
(∫

V
g,E · δuE dV +

∫
V
geδuk,k dV

+
∫
V
ρeδuϕ dV +

∫
aD
σ∗δuϕda

)
.

(20)
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Using D = Dnn + Dtt and E = Enn + Ett, and the con-
tinuous condition (10) and (11) of the D, E on the interface,
the Maxwell stress can also be rewritten as

n · (σ − σenv) = T̃∗ int,

T̃∗ int = T∗ int + n ·
(
σM env − σM

)
,

n · (σM env − σM
)
,

=
[

n · (Denv ⊗ Eenv)−
(

1
2

)
(Denv · Eenv)n

]

−
[

n · (D⊗ E)−
(

1
2

)
(D · E)n

]

=
(

1
2

)[
Dn
(
Eenv
n − En

)− (Denv
t −Dt)Et

]
n,

(21)

where n is the unit normal, subscripts n and t mean the
normal and tangential direction respectively; there is no sum
on n and t. Equation (21) points out that in the case of small
strain the boundary surface traction corresponding to the
Maxwell stress is along the normal direction.

4. Measurement of Material Constants in
Isotropic Electrostrictive Materials

For isotropic materials we have

Cijkl = λδi jδkl + G
(
δikδjl + δilδ jk

)
,

li jkl = a2δi jδkl +
(
a1

2

)(
δikδjl + δilδ jk

)
,

εi j = εδi j , eki j = 0.

(22)

So (3) and (4) are reduced to

g =
(

1
2

)
λεiiεkk + Gεi jεi j −

(
1
2

)
εEkEk

−
(

1
2

)(
a2EiEiεkk + a1EiEjεi j

)
,

(23)

σkl = λεiiδkl + 2Gεkl −
(

1
2

)
(a2EiEiδkl + a1EkEl),

Dk = εEk + (a2Ekεmm + a1Elεkl) ≈ εEk,

Skl = σkl + σMkl = λεiiδkl + 2Gεkl −
(

1
2

)
(a2 + ε)EmEmδkl

+
(

1
2

)
(2ε − a1)EkEl.

(24)

The first formula in (24) is just the usual form of the
constitutive equation, where a1 and a2 are known as elec-
trostrictive coefficients. From (8)–(11), it is known that
solving S is easier than solving σ , so in experiments the mea-
sured variables usually are (S, ε, E). So that in usual experi-
ments the measured material coefficients are 2ε − a1 and
a2 + ε. Therefore, when we do experiments we should clearly
provide what variables are used. In isotropic materials or

materials without the electromagnetic body couple variables
S, σ , and σM are all symmetric.

As an example, we discuss the electroelastic field of an
isotropic rectangular dielectric with material constants ε, a1,
a2. The length, width and height of the dielectric are l, b,
and h, respectively. Let the coordinate origin be located at
its center, the axes are parallel to its edges, the axis x2 is
perpendicular to its middle plane. Assume the electric field in
dielectric is homogeneous E = E2n, n = i2 and the dielectric
is free from the external force (f , T∗ int = 0).

4.1. The Surrounding of the Dielectric Is Air. In the air there
is no mechanical stress. On the interface we have

Eair
t = Et, Dair

n = Dn on interface; or

Eair
1 = E1 = 0, Eair

3 = E3 = 0,

Dair
2 = D2

(
ε0E

air
2 = εE2

)
, x2 = ±h

2
,

Eair
1 = E1 = 0, Eair

3 = E3 = 0,

Eair
2 = E2; x1 = ± l

2
, or x3 = ±b

2
,

(25)

where n and t mean the normal and tangential directions,
respectively. In this case from (8)–(10) we get

Si j, j = 0, in V ,

(
Si j − Sair

i j

)
ni = 0, on aint =⇒ σi j =

(
σM air
i j − σMi j

)int
,

σM22 =
(

1
2

)
D2E2, σM11 = σM33 = −

(
1
2

)
D2E2,

σMi j = 0, when i /= j; on aint,

σM air
22 =

(
1
2

)
Dair

2 Eair
2 , σM air

11 = σM air
33 = −

(
1
2

)
Dair

2 Eair
2 ;

σM air
i j = 0, when i /= j, on aint =⇒

σ11 = σ33 = −
(

1
2

)[(
ε2

ε0

)
− ε
]
E2

2,

σ22 =
(

1
2

)[(
ε2

ε0

)
− ε
]
E2

2.

(26)

Using the constitutive equation (24) we get

−
(

1
2

)[(
ε2

ε0

)
− ε

]
E2

2 = (3λθ + 2Gε11)−
(

1
2

)
a2E

2
2,

(
1
2

)[(
ε2

ε0

)
− ε

]
E2

2 = (3λθ + 2Gε22)−
(

1
2

)
(a2 + a1)E2

2,

−
(

1
2

)[(
ε2

ε0

)
− ε

]
E2

2 = (3λθ + 2Gε33)−
(

1
2

)
a2E

2
2.

(27)
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4.2. The Dielectric and Air Are All between Two Parallel Infinite
Rigid Electrodes. In electrodes E = 0, so there is no Maxwell
stress. In this case from (8)–(10) we get

Si j, j = 0, in V ,

(
Si j − Senv

i j

)
ni = 0, on aint =⇒ σi j =

[
σM env
i j − σMi j

]int
,

σM22 =
(

1
2

)
εE2

2, σM11 = σM33 = −
(

1
2

)
εE2

2,

σMi j = 0, when i /= j, on aint,

σ
M plate
22 = 0, σM air

11 = σM air
33 = −

(
1
2

)
ε0E

2
2,

σM env
i j = 0, when i /= j, on aint =⇒

σ11 = σ33 =
(

1
2

)
(ε − ε0)E2

2,

σ22 = −
(

1
2

)
εE2

2.

(28)

Using the constitutive equation (24) we get

(
1
2

)
(ε − ε0)E2

2 = (3λθ + 2Gε11)−
(

1
2

)
a2E

2
2,

−
(

1
2

)
εE2

2 = (3λθ + 2Gε22)−
(

1
2

)
(a2 + a1)E2

2,

(
1
2

)
(ε − ε0)E2

2 = (3λθ + 2Gε33)−
(

1
2

)
a2E

2
2.

(29)

In (27) and (29) 3θ = εii. In the discussed cases the third
equation in (27) and (29) can be omitted. In experiments we
can measure strains from the given electric field. From (27)
or (29) or other improved methods we can get electrostrictive
coefficients. It is clear that the environment has obviously
effect.

The above example is very simple and ideal. The real
experimental set is more complex, but from above discus-
sions, we can see that in order to get correct electrostrictive
constants in experiments we need consider the entire system
including the dielectric medium, its environment and their
common boundary.

5. Conclusions

In this paper, we discuss the nonlinear electroelastic analysis
in the electrostrictive materials by the physical variational
principle. Given a general expression of the electric force.
Using the governing equation proposed in this paper we give
a possible method to correctly measure the electrostrictive
coefficients. It is shown that in order to get correct material
constants in experiments we need take the correct governing
equations and consider the entire system including the
dielectric medium, its environment and their common
boundary.

Appendices

A. The Derivation of δE in (7)

In our previous papers δE in (7) was directly given, here we
shall give a simple derivation.

Assume the variational functional is

I =
∫
V
L
(
xi,uα,uα, j

)
dV , (A.1)

where x, u, u, j are the independent variable, dependent
variable, and the derivative of the dependent variable,
respectively. Assume an infinitesimal transformation

xi −→ x′i = xi + δui
(
xj ,ϕ

)
,

ϕ(xi) −→ ϕ′
(
x′i
) = ϕ(xi) + δϕ

(
xi,ϕ

)
,

δϕ = ϕ′
(
x′i
)− ϕ(xi)

=
[
ϕ(xi + δui) + δϕϕ(xi)

]
− ϕ(xi)

= δϕϕ + δuϕ = δϕϕ + ϕ,iδui.

(A.2)

Noting

∂x′i
∂xj

≈ δi j +
∂δui
∂xj

,

∂xi
∂x′j

≈ δi j − ∂δui
∂xj

,

j =
∣∣∣∣∣
∂x′i
∂xj

∣∣∣∣∣ ≈ 1 +
∂δui
∂xi

, (A.3)

from (A.2) we get

δϕ, j = ∂ϕ′
(
x′i
)

∂x′j
− ∂ϕ(xi)

∂xj

= ∂
[
ϕ(xi) + δϕ

(
xi,ϕ

)]
∂xk

∂xk
∂x′j

− ∂ϕ(xi)
∂xj

= ∂δϕ
(
xi,ϕ

)
∂xj

− ∂ϕ(xi)
∂xk

∂δuk
∂xj

=
∂
(
δϕϕ + ϕ,iδui

)

∂xj
− ∂ϕ(xi)

∂xk

∂δuk
∂xj

=
∂
(
δϕϕ

)

∂xj
+
∂
(
ϕ,iδui

)
∂xj

− ∂ϕ(xi)
∂xk

∂δuk
∂xj

=
∂
(
δϕϕ

)

∂xj
+
∂
(
ϕ,i
)

∂xj
δui.

(A.4)

Equation (A.4) is identical with δE in (7) in text.
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B. The Derivation of (19)

From (19) we have

δuΠ =
∫
V
g,E · δuE dV +

∫
V
geδuk,k dV +

∫
V
ρeδuϕ dV

+
∫
aD
σ∗δuϕda +

∫
V env

genv
,E · δuEenv dV

+
∫
V env

ge envδuenv
i,i dV +

∫
V env

ρenv
e δuϕ

env dV

+
∫
aenv
D

σ∗envδuϕ
env da +

∫
aint

σ∗ intδuϕda

= −
∫
V
DiEp,iδup dV −

∫
V

(
1
2

)
DkEkδuj, j dV

+
∫
V
ρeδuϕ dV +

∫
aD
σ∗δuϕda−

∫
V env

Denv
i δuE

env
i dV

−
∫
V env

(
1
2

)
Denv

k Eenv
k δuenv

j, j dV +
∫
V env

ρenv
e δuϕ

env dV

+
∫
aenv
D

σ∗envδuϕ
env da +

∫
aint

σ∗ intδuϕda

= −
∫
V

(
DiEp

)
,i
δup dV +

∫
V

(
ρe −Di,i

)
δuϕdV

−
(

1
2

)∫
a
DkEknjδuj da +

(
1
2

)∫
V

(DkEk), jδuj dV

+
∫
aD
σ∗δuϕda−

∫
V env

(
Denv

i Eenv
p

)
,i
δuenv

p dV

+
∫
V env

(
ρenv
e −Denv

i,i

)
δuϕ

env dV

−
(

1
2

)∫
V env

Denv
k Eenv

k nenv
j δuenv

j dV

+
(

1
2

)∫
V env

(
Denv

k Eenv
k

)
, j
δuenv

j dV

+
∫
aenv
D

σ∗envδuϕ
env da +

∫
aint

σ∗ intδuϕda.

(B.1)

Using (8)–(11), that is,

Dini + σ∗ = 0, on aD,

Di,i − ρe = 0, in V ,

(
Di −Denv

i

)
ni = −σ∗ int, on aint

(B.2)

and adding terms
∫
a Dini(Epδup + δuϕ)da = 0 and∫

aenv Denv
i nenv

i (Eenv
p δuenv

p + δuϕenv)da = 0 to (B.1), then (B.1)
is reduced to

δuΠ = −
∫
V

(
DiEp

)
,i
δup dV −

∫
V

(
1
2

)
DkEknjδuj dV

+
∫
V

(
1
2

)
(DkEk), jδuj dV +

∫
a
DiEpniδup da

−
∫
V env

(
Denv

i Eenv
p

)
,i
δuenv

p dV

−
∫
V env

(
1
2

)
Denv

k Eenv
k nenv

j δuenv
j dV

+
∫
V env

(
1
2

)(
Denv

k Eenv
k

)
, j
δuenv

j dV

+
∫
aenv

Denv
i Eenv

p nenv
i δuenv

p da

=
∫
aσ
σMi j niδuj da−

∫
V
σMi j,iδuj dV

+
∫
aenv
σ

σM env
i j nenv

i δuenv
j da−

∫
V
σM env
i j,i δuenv

j dV

+
∫
aint

σMi j niδuj da +
∫
aint

σM env
i j nenv

i δuenv
j da.

(B.3)

From (19), we know that he work done by the equivalent
static electric force is

δWe =
∫
V
f ek δuk dV +

∫
aσ
Te
kδuk da +

∫
V env

f e env
k δuenv

k dV

+
∫
aenv
σ

Te env
k δuenv

k da +
∫
aint

(
Te
k − Te env

k

)
δuk da.

(B.4)

From (B.3) and (B.4), we immediately get (19).
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